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We report the details of an application of the method of maximum entropy to the extraction of spec-
tral and transport properties from the imaginary-time correlation functions generated from quantum
Monte Carlo simulations of the nondegenerate, symmetric, single-impurity Anderson model. We find
that these physical properties are approximately universal functions of temperature and frequency when
these parameters are scaled by the Kondo temperature. We also found that important details for suc-
cessful extractions included the generation of statistically independent, Gaussian-distributed data, and a
good choice of a default model to represent the state of our prior knowledge about the result in the ab-
sence of data. We suggest that our techniques are not restricted to the Hamiltonian and quantum Monte
Carlo algorithm used here, but that maximum entropy and these techniques lay the general groundwork
for the extraction of dynamical information from imaginary-time data generated by other quantum

Monte Carlo simulations.

1. INTRODUCTION

Using the method of maximum entropy,! we have ex-
tracted, with no adjustable parameters, spectral and
transport properties from the imaginary-time correlation
function data generated by quantum Monte Carlo (QMC)
simulations of the nondegenerate, symmetric, single-
impurity Anderson model.*"* The physical quantities
obtained are found to be universal functions when the fre-
quency and temperature are scaled by the Kondo temper-
ature. This universality is a striking feature, not found in
perturbation theory, but found in experiment, and pro-
vides the benchmark for our claim of successful extrac-
tions. In this paper, we present the details of our use of
maximum entropy with QMC simulations. In a subse-
quent paper, we will discuss the physics obtained from
our results.’

The inability to extract dynamical information from
imaginary-time quantum Monte Carlo data has long been
a factor limiting the usefulness of quantum simulations.
Several attempts are published, and these attempts fall
into two broad classes. In one class are methods that
modify the Monte Carlo procedure;® in the other class
are ones that use existing procedures and attempt to ex-
tract the information from the resulting data.”~!° We are
concerned with the latter approach. Of previous work in
this class, most germane to our work are the ones by
Schiittler and Scalapino,® White et al.,’ and Jarrell and
Biham.!©

Schiittler and Scalapino first proposed the least-squares
approach and identified the inherent difficulty of the
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problem: the extraction is similar to performing an in-
verse Laplace transform numerically, which is a well-
known, ill-posed problem. With the necessarily noisy and
incomplete Monte Carlo data, the unique determination
of a spectral density is impossible. In the least-squares
approach, a “best” solution is sought by constraining the
solution with information on moments and sum rules, as-
sumptions about smoothness, or the requirement of posi-
tivity.3 719 Associated with each constraint is a Lagrange
multiplier that becomes an unknown parameter of the
solution. In general, the spectral functions produced by
these methods are just qualitatively interesting.

The maximum-entropy approach has different qualities
as it explicitly approaches statistical data analysis within
the concepts of conditional probabilities (Bayesian log-
ic).!! In this approach, the spectral density is regarded as
a probability function, and what is generally extracted
from the data is the most probable spectral density.}!
What is unique about the maximum-entropy approach is
the specification of four axioms that are used with
Bayes’s theorem to specify uniquely the prior probability
function of the solution in terms of the information
theory definition of entropy. In the absence of data, the
resulting spectral density is the one that maximizes the
entropy, hence the name of the method. From a practi-
cal point of view, the problem is reduced to finding the
most probable solution by maximizing the entropy when
it is constrained by the least-squares problem. In the re-
cent form of the method, classic maximum entropy,'? as
distinct from an older form, historic maximum entropy,
the Lagrange multiplier associated with this constraint is
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determined from Bayesian logic; as a result, the method
has no parameters to adjust arbitrarily.

The Bayesian approach to data analysis is a way of in-
corporating prior knowledge about probabilistic relation-
ships among data, variables, and the solution. Maximum
entropy specifies the prior probability function of the
solution and does so in such a way as to prohibit correla-
tions between different frequency values unless they are
warranted by the data. The least-squares approaches as-
sume that the prior probability is uniform, which is to
say it becomes incorporated into a normalization factor.
Additionally, their solutions can have unpredictable, un-
controlled correlations that can distort the result from
the true solution.

Since entropy is a relative function, maximum entropy
contains the choice of a “model” to set the zero and the
maximum of the entropy. More importantly, the model
is the solution produced in the absence of data or of
relevant information in the data. It also represents an ad-
ditional way to incorporate certain types of prior
knowledge about the spectral density into the solution
process. The absence of additional knowledge is mani-
fested by a “flat model” which is a constant, independent
of Matsubara frequency. Since quantum simulation data
lack very-high-frequency information, a model that in-
corporates proper high-frequency behavior is useful. In
our calculations for the Anderson impurity model, we
mainly used perturbation theory to provide a model. At
high frequencies, our results are biased towards the mod-
el, which is becoming exact, but at low frequencies they
exhibited important universality not present in the mod-
el, but present in the physics.

We feel the model allows perturbation theory and
quantum Monte Carlo to be combined in a novel way;
however, the model can be chosen in a variety of other
ways. For example, if several moments of the spectral
density are known, then maximum entropy can be used
to determine the most likely model based on this informa-
tion. In a practical sense, the model is a convenient
means to incorporate prior information about the solu-
tion into the problem. The use of prior information can
be essential to solving ill-posed problems satisfactorily.

The maximum-entropy approach has successfully been
used to extract dynamical information from various
simulations of several different Hamiltonians calculated
by several different quantum  Monte Carlo
methods.2~ %1316 Here, in a self-contained manner, we
will present and discuss general considerations necessary
to make the method work. Additional information may
be found in our preliminary study of the feasibility of the
approach.! Simply applying the method in a “black-box”
manner is insufficient to obtain proper results. For con-
creteness, we present detailed considerations in the con-
text of our previous work on extracting spectral and
transport properties from simulations of the single im-
purity Anderson model.2~*

In Sec. IT and III, we summarize general relations be-
tween quantum correlation functions and spectral densi-
ties, and general features of maximum entropy. These
sections are intended to be relatively self-contained, sum-
marizing information spread across various sources. In
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Sec. IV, we describe our test problem, the nondegenerate,
symmetric, single-impurity Anderson model, and the
quantum Monte Carlo algorithm used to compute its
properties. We chose this model because the qualitative
features of its spectral density are well established and be-
cause a particularly convenient algorithm exists to pro-
duce the imaginary-time Green’s-function data. Then, in
Sec. V, we highlight important technical details about the
application of maximum entropy to this Hamiltonian,
describing measures taken to generate statistically in-
dependent, Gaussian-distributed data. An important
feature is the computation of the covariance among the
thermodynamic Green’s-function values at different
imaginary times. These correlations have been ignored in
all previous work, but we find them to be essential for ob-
taining the proper solution. We also discuss issues help-
ful for judging the validity of the solution. In Sec. VI, we
present a detailed study of the application of maximum
entropy, illustrating several of the points in Sec. V and
focusing on the differences between our spectral densities
and those of the model. The principal difference is
universality. Complete descriptions of the results and
their physics will be given elsewhere.’ In addition, we dis-
cuss a compelling feature of maximum entropy, its ability
to estimate whether the error in the data is properly es-
timated. In cases where we achieved our best results, our
data was the most consistent with this inferred estimate.
Finally, in Sec. VII, we describe other features concern-
ing the application of our methods, their possible im-
provement, and areas for additional study.

II. DYNAMICAL CORRELATION FUNCTIONS

We briefly summarize properties of various time-
dependent correlation functions and their relation to
spectral densities, drawing together bits and pieces from
various sources.®!”"1° We consider a system described
by a Hamiltonian H and examine the time-dependent
correlation between two operators 4 and B. Quantum
Monte Carlo allows us to calculate the imaginary-time
correlation function

G 4p(r)={ A(—iT)B)

L rro—BH 4 (—;
ZTr[e A(—iT)B], (1)

where

A(t)y=elH go—iH
and

Z =Tre PH

is the partition function at temperature k; T=1/8 and
0<r=<8.

Experimental methods allow us to measure the
response of the system in terms of real-time correlation
functions of the form

SAB(t)=<A(t)B) (2)

for the correlation function and
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X 4p(t)=i{[A(2),B]_) 3)

for the linear response function. The scattering function
is the Fourier transform of S 45(¢)

Sple)=[ jwwdtei“”SAB(t) , (@)

with § z(—w)=exp S ,z(w). Other quantities, like
the frequency—dependent conductivity and magnetic sus-
ceptibility, are given by the retarded part (z =w+i0") of
the two-sided Laplace transform of x ,5(¢)

Xap@=0 [

where z is a complex frequency with Imz70,
o =sgn(Imz) and

“dt 0(ot)ey 5(1), (5)

1, s>0

8(s)=10, s<o0.

Another correlation function (Green’s function)
¢A3(t)=i<[A(t),B]:t> ' (6}

with its corresponding two-sided Laplace transform

¢AB(Z)—Uf

is useful (for fermlomc operators). In this definition, the
choice of commutator depends of whether 4 and B
anticommute (upper sign) or commute (lower sign). ¢ 4p
is not directly related to G 4z, but both S 45 and Y 45 can
be expressed in terms of ¢ ,p.

These connections are most easily expressed in terms of
various spectral functions

“dt 0(ot)e™p 4p(2) N

X',;B(m)=_lT[XAB(Z =0+i07)—x 43z=0—i0")]

_1
_21f

“dt ey (1) (8)
and
$ip (@)= 1[4 4a(z =0+10")=4 15z =0—i0")]

=1
2i
Although these functions are defined for real frequencies

o, they contain complete information about the full com-
plex frequency functions since

T2t et 4y (1) | ©)

+odo Xapl®)

XAB(Z)—f o T 1>’ o (10)
+o do ¢AB(w)
b= [T -

The connection between S 5 and X 45 is the fluctuation-
dissipation theorem

2x"ip(@)=(1—e"#)S ;3(w), (12)
while the connection between S 4z(®) and ¢ 4z(@) is

S 4p(@)=2¢"1p(@) /(1Lexp ) . (13)
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The correlation function G 45(7) is periodic (bosonic)
or antiperiodic (fermionic) in 7 with period 8. From (1)
and (7), it follows that

G (T E e

"¢AB(Z =iw,r), 0=7<B (14)

where the o, are the Matsubara frequencies

mn=%(2n +1),

for fermion operators or

n=0,%x1,12,...

for boson operators. With (11) and the completion of the
Fourier sums,

GAB(T)=f+w do e

e bz =arti0T)

_¢AB(Z =CO_'IO+)]
or with the use of (9)

todo e~
GAB(T)=I_°° » 1te

—" ——¢'4n (15)
Thus the problem of extracting dynamical information
from the imaginary-time correlation function is reduced
to solving this integral equation. With this solution
S 4p(@) and x'jp(w) are found with the use of (12) and
(13).

When B = 4 *,

¢AAT AAT(a)) 0, a)X";Af(co)ZO. (16)

Hence, so is GAA+(T).

To be more concrete, we will choose 4 =d,, where d,,
is the operator that removes an electron from state d with
spin o, and define ¢ (w) as the corresponding spectral
density. This quantity represents the probability of
finding an electron with spin o and energy o in the state
d, and G 45 (7) is simply the single- partlcle Green’s func-

tion associated with that state, T)“(d 'r)d T)
Defining 4(0)=3 ,¢,(w)/mT and G(T =3 .G, (1), then
using (15), we can write
+ 0 e @
G(r)= do———A4 . (17)
(1) f_w a)1+e“’3“’ (w)

The solution of this equation, when the Hamiltonian H is
that of the single-impurity Anderson model, will be the
principal subject of this paper.

Another interesting case arises when 4 =S8, where
S~ is the spin lowering operator for some state. In this
case,

¥ +°°de’£__ B
(s~(nstonN=[" P :
where ¢” (@) is the associated spectral density. Such
spin correlation functions are generally repressed in

terms of the imaginary part of the dynamical susceptibili-
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ty. Using (12) and (13), we can rewrite the above as

— + _ +°°ﬂ lw)e
(sT(nsTon= [ R4 =S

—Tw

where ¥’ . (w) is the transverse magnetic susceptibility.
For the Anderson model, we will use S (7)
=d ! (r)d,(r). The solution of this equation will be dis-
cussed elsewhere.*

III. MAXIMUM ENTROPY

For the analytic continuation problem of this paper,
we are primarily concerned with inferring the spectral
density function A4(w) from the imaginary-time Green’s-
function data G(r), which result from quantum Monte
Carlo simulations. Given the data, what is our best esti-
mate of A (w) and how confident are we in our predic-
tions? The answer to this question is not clear-cut since
it depends on both the data and our prior knowledge
about 4(w). For example, if physics told us that the
spectral density function must have a particular function-
al form, then we need to consider only a very limited set
of possibilities defined by a handful of parameters. Alter-
natively, if we did not have a good a priori reason to as-
sume a functional form, then we must consider a much
larger set of possibilities. Even without a functional
form, we may know about the positivity of the spectral
density function, its zeroth moment {normalization), or
an asymptotic solution, and so on, which will restrict the
set of allowed possibilities for 4(w). How, then, should
we combine our prior knowledge with the evidence of the
data to obtain our best estimate of 4 (@) and a measure
of its reliability??°

Cox?! has shown that any method of inference that
satisfies simple rules for logical and consistent reasoning
must be equivalent to the use of ordinary probability
theory. Accordingly, the conditional probability distri-
bution function (PDF) P[4|G,I] summarizes our in-
terference about the spectral density function given the
data G(7) and relevant background information I such as
prior knowledge about A4 (w). Since the numerical value
of the probability assigned to a particular 4 (o) is a mea-
sure of how much we believe that it is the true spectral
density function, our best estimate is given by that 4 (o)
which maximizes P[ 4 |G,I]. The width of the probabili-
ty distribution function tells us the reliability of the esti-
mate.

To compute P[ 4|G,I}, we use Bayes’s theorem, which
relates the PDF we require to one which we can calculate
and to another which encodes our prior knowledge:

P[4|G,1]<P[G|A4,IP[A|I]. (19)

The term on the far right-hand-side P[ 4|1} is called the
prior PDF and represents our state of knowledge about
A (o) before we have the data. Our prior state of
knowledge is modified by the data through the so-called
likelihood function P[G|A,I], which encodes details
about the nature of the simulation. The product of the
prior PDF and the likelihood function yields the pos-
teriori PDF we require and represents our state of
knowledge about A4 (w) after we have analyzed the data.
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The likelihood function tells us how likely it is that we
would have measured the data we actually did, if we were
given an A4 (). In order to compute the likelihood func-
tion, therefore, it is essential (but not sufficient) that we
should be able to calculate an ideal data set G{7) given a
spectral density function. For our case, the relevant
transform is given by

6= ""doK (1,0)4() (20)

where the kernel
__e ™

K(r,0)= {+o P *
To calculate the likelihood function, we also need some
knowledge about the statistical properties of the errors in
the data. If we make the simplifying assumptions that
the data are independent (so that one measurement does
not affect another) and subject to additive Gaussian noise
with a root-mean-square error o;, then the likelihood
function takes the familiar form

_ e X2
P[G| A, 1= ————o, i
I,V 2mo?

where ¥? is the usual sum-of-squared-residuals misfit
statistic:

16,
XZ:E __l_Ti__ ,

i O

where G;=G(r;). The least-squares approach follows
from the assumption that the prior PDF P[ 4|I] is a con-
stant (part of the normalization), and finds the most prob-
able 4 (w), 4(w), by maximizing the likelihood PDF,
which is the same as minimizing y2. The least-squares
approach assumes that there is no prior knowledge about
Al(w).

There is, however, an unrefutable piece of prior
knowledge about A4 (w): it is a positive and additive dis-
tribution. The appropriate prior for a positive and addi-
tive distribution is not immediately obvious, but many
different types of arguments, including logical consisten-
cy, information theory, coding theory, and combinatorial
arguments, lead to the entropic form'%!?

eaS[A,m]

P[AlI,m,a]=—ZE;)— ;

Here the prior information I assumes only that 4 (o) is
positive and additive, Zg is a normalization constant, and
S is the generalized Shannon-Jaynes entropy

S[4,m]= [do{ A(o)—m(0)— 4(o)n] 4(0)/m ()]} ,
(21)

where m (@) is a Lebesgue measure on the space of the
distribution and « is a dimensional constant which is ini-
tially unknown. Multiplying this entropic prior with the
likelihood function, we obtain {to within a normalization
constant) the posterior PDF P[ 4|G,I,m,a]. The func-
tion m(w) is called the model. It sets both the zero and
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the maximum of the entropy.

To proceed further and deal explicitly with the ex-
traneous factors of @ and m(w), we need to use two more
results from probability theory. The first is essentially a
restatement of Bayes’s theorem:

Pla,b]=P[a|b]P[a]

and the second concerns marginalization, or the integrat-
ing out, of nuisance parameters:

Pla)= [ db P[a,b] .

The parameter @ can be removed from the problem by
using these relationships in the following manner:

P[A|G,m]= [daP[4,alG,m]
=fdaP[Al§,m,a]P[a|G_,m] ,

where we have omitted the conditioning on I as implicitly
given throughout. So we eliminate a from the posterior
PDF for A(w) by integrating, with respect to a, the
product of the posterior PDF derived above with the pos-
terior PDF for a. If the number of data is large, then the
posterior PDF for « is often sharply peaked, say around
&, because we are trying to estimate a single parameter
given many data. Therefore the integral over «a is usually
well approximated by fixing the value of a to be &:

P[A|G,m,a]=P[A|G,m,&] .

To calculate the posterior PDF for a, we just use the
same rules of probability theory as above:

P[alé,m]=fi)A Pl 4,a|G,m]
o« fﬂA Pl 4,a,G|m]
< [D4P[G|AIP[ A|m,a]P[a],

where we have dropped irrelevant conditioning state-
ments in the last line for simplicity (e.g.,
P[G| A,m,a]=P[G| 4], because the data only depend
on the spectral density functions and not the Lebesgue
measure or a). The first term in the integral, P{G| 4], is
the likelihood function, the second term P[ A|a,m] is the
entropic prior, and the last term is the prior PDF for a.
Skilling'? has shown that the integral over the spectral
density functions requires a measure [ 4 (w)]™!/2, which
is equivalent to the entropy metric, to correctly define the
volume element 2 A. Any reasonable (i.e., not highly in-
formative) choice for the prior PDF Pla] is soon
overwhelmed by the evidence of the data to yield a sharp-
ly peaked posterior PDF for a. Following Skilling,'? if
we use P[a]=const and carry out the integral over the
spectral density functions in the Gaussian approximation
(by expanding In(P[ 4|G,m,a]) in a quadratic Taylor
series about the optimal 4 (w)), we find that & is given by

i

—285=3,

, 2)
= &+A,

where A; are the eigenvalues of the Hessian operator

3%*y2/3 A(0)d A(0') viewed in the entropy metric. The
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sum on the right-hand side is often referred to as the
number of good data, N,.

To remove m(w) from the posterior PDF for 4 (w),
we should, in principle, marginalize out the Lebesgue
measure. In practice, this is far more difficult (if not im-
possible) than the marginalization of «, because m{w) is
not a single parameter. For example, we cannot general-
ly assume that the posterior PDF for m (w) will be sharp-
ly peaked or that the prior PDF we assign to m(w) will
not strongly affect its posterior PDF. Therefore we give
the posterior PDF for A4 (@) conditional upon our choice
of m(w): P[4|G,m]. Rather than being a failure, how-
ever, the explicit conditioning on m (&) has the advan-
tage that it enables us to incorporate our prior expecta-
tion about 4 (w) into the problem in a natural way. This
is because, in the absence of any data, the posterior PDF
for A(w) becomes directly proportional to the entropic
prior with m () being our best (prior) estimate for 4 (w);
this is the reason m () is often called the default model.
Although the choice of the default model is up to us and
the results we give are conditional upon it, probability
theory does allow us to choose quantitatively between
different alternatives if they are available:

P[m|Gl= [P[4,m|G1D A
«<P[m) [P[4|G,m1DA .

So, the ratio of the posterior probabilities for two alterna-
tive default models m,(w) and m,(w) is given by ratio of
prior probabilities (which we might take to be unity to be
“fair”) times the ratio of their evidences. We use the
word “evidence” here, in common with its usage by Skil-
ling,?? to refer to the integral quantity which is the nor-
malization factor in Bayes’s theorem for the posterior
PDF for 4 (o).

Central to part of our original question, “What is our
best estimate of the spectral density function,” and to the
computation of integrals over A4 (@), calculated in the
Gaussian approximation, is the optimal solution for
A4 (), 4(w). Formally, we need to find the maximum of
the posterior PDF for 4 (@), leading to the condition

3 | o X
as D)

34 =0

A4

The solution is referred to as the maximum eniropy
reconstruction, or image. We leave an account of algo-
rithmic issues related to finding this solution to the Ap-
pendix, and go on to a consideration of the other part of
our original question, ‘“What is the reliability of our best
estimate of the spectral density function?”’

Let us suppose that we wish to estimate a quantity B
which is some function F of the spectral density function:
B=F[ A(w)]. For example, B might be given by the in-
tegral transform

B=[doPlw)4(0). (23)

If P(w) was a & function at g, then B would be equal to
the value of the spectral density function at ®=w, Our

inference about B is given by the posterior PDF
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P[B|G,m,F], which is related to the posterior PDF for
A (w) we have derived above by

P[B|G,m,F]= [DA P[B, 4|G,m,F]
= [DAP[B|4,FIP[4IG,m],

again dropping irrelevant conditioning statements for
simplicity. The PDF P[B| A,F] is, of course, just a &
function: 8(B —F[ A(®)]). As usual, our best estimate
of B, B, is given by the maximum of the posterior PDF
and will be equal to the value of B for the optimal spec-
tral density function: B=F[ 4(w)]. The width of the
PDF around B will give us the reliability or error bar 8B.
We will find that although the value of the inferred spec-
tral density function at any particular frequency has a
very large (if not infinite) error bar, because we cannot
obtain microscopic information from macroscopic data,
integrated features of 4 () can be reliably determined.

Let us conclude this section with a few general re-
marks. We have presented here the Bayesian approach
to the analytic continuation problem. Probability theory
enables us to address both the question of the optimal
solution and its reliability. It also reminds us that all
answers are conditional upon our prior knowledge, but
provides us with the machinery to quantitatively choose
between alternative assumptions when they are available.
If we do not “like” the answer, there must be additional
prior knowledge or expectations that we have about the
situation which we have not incorporated into the
analysis; because all our assumptions are stated explicitly
up front, in the conditioning statements, the causes of the
shortcomings are easy to spot and rectify. The entropic
prior, for example, encodes our unrefutable prior
knowledge that the spectral density function is a positive
and additive distribution, but we may also have reason to
believe that A4(w) is locally “smooth.” A slightly
different formulation of the problem??2* enables us to
combine legitimately local smoothness with entropy, and
the probabilistic framework allows us to consider quanti-
tatively the evidence for our inkling and to optimally
choose the parameter(s) describing the corresponding
spatial correlations.

It sometimes happens that there are uncertainties in
our knowledge of the relationship between the data and
the object of interest. Often this takes the form of an un-
known constant ¥, which scales the errors assigned to the
data, o;—Yy0;, thereby affecting the likelihood function
and the posterior PDF for 4 (w). To estimate the value
of this scaling factor, we just use the same rules of proba-
bility theory to compute the posterior PDF for y:

Ply|G,m]= [DA P[y,41G,m]

<Ply][DAP[4]G,my].

Again, since we are trying to estimate a single parameter
from many data, the value of ¥ will be well determined
by the data (independent of any reasonable assignment
for the prior PDF for y). Although this analysis is only
strictly valid for the problem where there is such an un-
known scaling constant for the errors, we frequently used
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it to check that the inferred value of ¥ was close to unity
since y >>1 would indicate serious systematic flaws in
our calculation of the errors {and the assumptions that
underlie it).

The model allows prior information about the solution
to be incorporated in a consistent and convenient
manner. In the calculations to be presented, we found
that good perturbation theory provides good models.
Sum rules and moments with the maximum-entropy
method are also sources of models.?#!3 for instance, if

Jdoflo)4(w)=6,

then a potentially useful model can be chosen by maxim-
izing — A In A subject to the above and normalization as
constraints. The result is

m =pe U@
where
pfdwe“qf(“’)=1, pfdcof(w)e_qf(“’)=6 .

Extension to multiple sum rules is straightforward. In
the absence of prior information the flat model, where A4
is a constant, independent of w, is appropriate.

IV. QUANTUM MONTE CARLO

A, Anderson impurity model

As a test problem, we chose to find the spectral density
of the symmetric, nondegenerate, single-impurity Ander-
son model?

H=T &y, +3 Vigled,d, +dlcy,)
Ik, o k,o

teg S dld, +Ungny (24)
d

where €, is the band energy of an electron in state k, € is
the orbital energy of the impurity, V,, is the strength of
the hybridization between the orbital and the conduction
band, and U is the strength of the electrostatic repulsion
between two electrons both occupying the orbital state.
The total spectral density has contributions from the or-
bital states and the conduction band. We will only be
concerned with the impurity (orbital) state contribution.

This model was originally proposed to describe the
properties of dilute magnetic alloys. A central question
was the development and persistence of a magnetic mo-
ment of an atom with a partially filled shell when alloyed
into a metallic host. Experimental systems were found to
have a number of anomalous transport properties, and
several of these properties showed identical behavior
(universality) if the temperature was scaled by a
material-dependent constant called the Kondo tempera-
ture Tx. Universality within the Anderson single-
impurity model was established by the renormalization-
grouzg calculations of Krishna-murthy, Wilkins, and Wil-
son.?® Bickers, Cox, and Wilkins?” have emphasized that
for a dilute alloy various transport coefficients are mo-
ments of the inverse of the spectral density. For example,
the electrical resistivity is
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20) o p (T 25
o T) o T, (25)
while the thermal conductivity is
WT/T . LY 26
[x(T)/T]y Ly’
where

*2 0f A~ (o)

Ln‘x -0 0w

and f is the Fermi-Dirac function. Since the derivative
of f with respect to w is a sharply peaked function about
«=0, the transport coefficients are very dependent on the
spectral density near the Fermi surface, and since these
coefficients exhibit universality at low temperatures, the
spectral density near @ ~0 is expected to exhibit approxi-
mate universality when @ and T are scaled by T.

For the symmetric Anderson model, where
gqg = —U /2, the spectral density is an even function in w.
Its semiquantitative features are easily conjectured.?®
When both U and V,,; are zero, & functions sit at
wEtU/2, corresponding to the probability of adding an
electron to an occupied state or having a doubly occupied
particle or hole state. When the hybridization is non-
zero, the 8 functions are broadened into Lorentzians
(Friedel peaks) with a width '=7¥V2N(0), where V is
some measure of the effective hybridization and N (0) is
the density of state at the Fermi level. When U0 and
the temperature 7T is near or below the Kondo tempera-
ture Tg, then a central, non-Lorentzian, resonance peak,
whose width is proportional to Ty (the Kondo reso-
nance), exists. As T—O0, the Friedel sum rule? predicts
that A4 (0) approaches 1/#I". From the point of view of
the impurity, the presence of the conduction band is evi-
denced almost exclusively by the resonance broadening.

Horvatié, Sok&evié, and Zlati¢*® calculated the spectral
density of the symmetric Anderson model using perturba-
tion theory where the natural expansion parameter was
u =U/w. They expanded the self-energy as a function
of u about an unperturbed state chosen to be the
Hartree-Fock solution. The expansion is expected to be
useful for # < 1.0 and is also expected to become exact as
@w— . For the symmetric model, the lowest order term
is quadratic in 4. This approximation to the proper self-
energy is then used in Dyson’s equation to calculate the
correlation function from which the spectral density is
found. Predicted are broadened peaks at U /2 and the
central peak at »=0; however, the central peak is not
universal. We chose this perturbation theory as one of
the models in our entropy expression. We found it supe-
rior to the flat model and better than one with three ap-
propriately placed Lorentzians.

B. Algorithm

We calculated G (1) for the Anderson model using the
QMC algorithm of Hirsch and Fye.””3! This algorithm is
particularly suited for impurity problems. For the sym-
metric model there are no ‘“sign” problems that plague

many quantum simulations and the algorithm is excep-
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tionally stable at low temperatures. Its natural product is
G (7). Furthermore, the impurity can be embedded in an
infinite medium to remove finite size effects. The
conduction-band details enter only through the nonin-
teracting problem, so it can be modeled in whatever
fashion is convenient. In our calculations, we modeled
the conduction band by a flat density of states and in
relevant integrations took the bandwidth to infinity to re-
move the bandwidth as a parameter. The Coulomb pa-
rameter U and the resonant broadening I' become the
two parameters controlling the physics of our problem.

In the Hirsch-Fye algorithm, the problem is cast into a
discrete path integral in imaginary time by first writing
the partition function as

Z=Tre PH

L
=Tr]] e —ATH
=1
and then using the Trotter approximation3?3? to write

L
Z=Tr[]e
I=1

_ATHOQ_ATH]'*‘O(ATZ) ’

where H is the noninteracting part of the Hamiltonian,
H, is the interacting (impurity) term, and Ar=8/L. The
interacting term is reduced to a noninteracting contribu-
tion by the introduction of auxiliary Ising variables

. —ArH, __e,_,ATV{ndtndl —-(1/2)()1dt -i-rzdl )]

As{n; —ny )
=1Tr.e G
z+ls ’

where cosh A=exp(A7rU /2). Then taking the trace over
the fermion degrees of freedom yields

Z=Tr; [] detM,[s], 27
o==1

where for a given configuration of Ising variables M [s]
is an L X L matrix whose nonzero matrix elements are

[M, 1,0 =—e A& =1(1—28,,)
odll+1 1

and [M_ ], =0 otherwise. K is a matrix representing the
noninteracting (bilinear) part of the Hamiltonian and
VZ=0os(l)A|d ){d| is the (imaginary) time-dependent po-
tential acting at only the impurity site.

Different Ising configurations give rise to different po-
tentials ¥. The Green’s function g,=[M,]~! for two
different configurations are connected by a Dyson equa-
tion

g'=g+(g—INe" V—Dg'.

As a matrix equation, because of the restricted range of
the interaction, there is an element of g that connects
only to the impurity state

8aa=8aa+(8aa—INeV "V —Igyy . (28)

If one starts with the Green’s function gJ; of the nonin-
teracting problem, the g,; for any configuration can be
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constructed by successive applications of this equation in
which one Ising variable is added at each application.

At each time step [ of the Monte Carlo procedure at-
tempts to flip the value of s; depending on whether the
ratio of the determinants in (27) for two different
configurations, R =R ;R | with

Vois'1—V?
Rt

R, =1+{1+gZH(L,D]] 1],

is greater or less than a random number between 0 and 1.
If the flip is accepted, then the function is updated by use
of (28). The application of the Monte Carlo test to all L
time steps is called a sweep. Averaging over a large num-
ber of sweeps generates an estimate for G (1)=3,{(g% ).

C. Specific points

At large positive and negative w, the kernel (20) ex-
ponentially damps 4 (@), causing the result of the in-
tegral, namely G(r), to be insensitive to radicaily
different high-frequency behaviors of A (). When mea-
sured by QMC, G () is inherently noisy and necessarily
incomplete. It is incomplete because the continuous vari-
able 7 can be sampled only for a finite number of discrete
values of imaginary time 7;, G;=G(r;). The noise and
incompleteness prompt for a least-squares solution to the
problem, but the insensitivity, when coupled with the
noise and incompleteness, translates into a terribly ill-
posed problem, meaning an infinite number of 4 (») ex-
ists that can be consistent with the measured correlation
function. Solving (20) means selecting by some criterion,
a process called regularization, a “best” solution. Max-
imum entropy is our regularization procedure.

For quantum Monte Carlo data, the assumption of
Gaussian-distributed errors is often adequate, but the as-
sumption of independent errors is usually very poor. The
deﬁni1l:ion of the x? statistic must be generalized to the
form:

¥'=3(6,~G)[C']4(G6,—G)), (29)
ij '
where C;; is an element of the covariance matrix describ-
ing the correlations between the data. With angular
brackets denoting a statistical average

ij=(((—;i(_;j>—(§i><(_;j>)/(N—1), (30)

where N is the number of samples. The covariance ma-
trix is symmetric, positive definite. Its diagonal elements
are the familiar values of the variance of (_}’j. We have
found that C is poorly approximated by its diagonal ele-
ments, meaning that strong correlations between different
values of (_i]- exist and the different éj are not statistically
independent. The importance of the off-diagonal terms
has been ignored in all previous work.

By diagonalizing C with an orthogonal transformation

S, we reexpress (29) in the resulting diagonal basis

(Gil_az‘)z
i o;
where
G'=STG, ¢'=S7G, (32)
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and o2 are the eigenvalues of C. We find that these eigen-
values can range over two to six orders of magnitude.
This means that not all the G ; values participate mean-
ingfully in the least-squares problem.

V. TECHNICAL DETAILS

The proper exiraction of 4 (o) from G (7) requires an
estimate of errors in the data and an understanding of the
propagation of these errors by maximum entropy. In this
section, we discuss both issues.

A, Statistical control

From the QMC, computing an estimate of G; is easy;
determining the reliability of that estimate is more
difficult. The general principle is to accumulate a
sufficiently large number of statistically independent mea-
surements so, by the central limit theorem, the sample
variance of these measurements becomes a measure of the
actual variance of measurements as their distribution be-
comes Gaussian. In practice, satisfying this principle is
the motivation for the coarse-grained averaging pro-
cedure.’ In this procedure, measurements of G, are usu-
ally made after each Monte Carlo sweep. Since succes-
sive measurements will be correlated to some degree, a
large number of successive measurements are collected
into a bin. For each bin, an average G, is computed. If
the bin is sufficiently large, different bin averages become
independent. Then for a large number of bins, the sample
variance of the bin averages is a measure of the variance
of the Gaussian distribution towards which these aver-
ages are tending. That a Gaussian distribution has been
approached is rarely checked. We found it necessary to
monitor the situation and take specific measures to pro-
mote Gaussian behavior.

For each 7; we measured G; only after every fourth
sweep, Our flip acceptance rate was 40—-50 %, which is
generally considered nearly optimal. (This is produced
by the algorithm; it is something we cannot control.) At
this “hit” rate, the autocorrelation,l_ength35 for each G,
was less than 1.5, so on this basis, we seem to be produc-
ing relatively independent measurements, but we found
that different bin lengths would give different variances
for the G,. Since we are trying to solve an ill-posed prob-
lem, these differences can change our results. We needed
to produce variances that were insensitive to binning.
The error estimation is further complicated by the strong
correlations among bin-averaged values and the need to
avoid storing large amounts of data. Instead of working
in the diagonal basis defined by the covariance matrix, we
chose to study the behavior of its diagonal elements. We
found that when they were under statistical control, max-
imum entropy’s estimate y of error rescaling was close to
unity, and if they were not under control, then ¥ was
greater than unity.

We did three things with the bin averages. For a fixed
number of bins, we assigned the data to a bin until the bin
was full and then repeated the process until all bins were
used (sequential binning). We also assigned the data to
different bins until all bins were used and then repeated
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the process until all bins were full {(shuffled binning). In
spot cases, we put the data into random order and then
did the sequential binning. We found little difference be-
tween this binning and the shuffled binning. The average
over all bins for these processes are the same; the vari-
ances are different, but if the bin size is large enough to
produce statistically independent averages, then the
differences in the variances cannot be statistically
significant. We used the F test’ to estimate the probabil-
ity that the differences are significant. In general, the
variances of only a few G, values had greater than a 95%
probability (more than three standard deviations) of being
statistically significant. The 7 values at which these large
deviations occurred varied from simulation to simulation.

We also performed a ¥? test3® to measure how well his-
tograms of our measurements compared to Gaussians
with the same mean and variance. Again, in only few
cases were the differences significant, and their location
varied from simulation to simulation. A particularly sim-
ple, but the most revealing, figure of merit was the kur-
tosis.?¢ It was generally negative, meaning our histograms
are flat at the peak. In general, the kurtosis was just mar-
ginally within one standard deviation of what it shouid be
if our bin averages were drawn from a Gaussian distribu-
tion. If the deviation was greater than one standard devi-
ation, then our error estimates proved inadequate.

Overall, our data would be more accurately described
as not being inconsistent with Gaussian behavior rather
than being described as being Gaussian. The major point
is greater effort than is normally done in a QMC calcula-
tion was required to achieve data that were not incon-
sistent with Gaussian sampling. Typically, we swept
1000 times to equilibrate the system before recording
measurements. The number of measurements in a bin
varied from 50 to 1000, and the number of bins varied
from 100 to 200. The numbers used depended on the
value of U, I', and T. The stated numbers are conserva-
tive and not optimal. When the T > Tk, the larger num-
bers were necessary, since at high temperatures, we have
fewer time steps and hence fewer data values. Reducing
the error associated with these values was necessary for
good results. The choice of Ar was also found to
influence the quality of our data. Empirically, we found
if UT(AT)2<0.2, then our error was statistical and not
discretization.

B. Solation assurance

“How does one know that the spectral density A4 (w)
produced by a data analysis procedure is the correct
one?” In a least-squares fitting of a model with a few pa-
rameters to the data, the best fit is judged to be the one
with the smallest y2. The usual measure of a good fit is
X*<N,, where N, is the number of independent data
points. For fitting an entire spectral function, however,
the number of free parameters is infinite, and an infinite
number of parameters may satisfy y?*=0 or any other
value of y>*< N, one may choose. Such fits often exhibit
structure which is a consequence of the statistical noise in

the data, rather than the physics. “How does one distin-
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guish this noise-induced structure from the real struc-
ture?”’

The goal of any statistical regularization procedure is
to provide criteria to select the best fit. Maximum entro-
py corresponds to seeking a fit which is closest to our pri-
or knowledge, with negative entropy being an informa-
tion measure of the distance between the solution and our
prior knowledge. In the early development of the
maximum-entropy method, the best fit was taken to be
the solution that satisfied Y*=N,, with 1/a being the
Lagrange multiplier associated with the maximum-
entropy constraint. This is known as the historic-
maximum-entropy criterion for a.

In the more recent approach discussed in Sec. IIl, « is
calculated by Bayesian logic. The best fit is the
maximum-entropy solution for the most probable value
for a. This approach is known as classic maximum en-
tropy and results in y2=N, —N,, where N, is the num-
ber of good eigenvalues of the likelihood function Eq.
(22). For classic maximum entropy, ¥ is thus less than
N,, the data are fit more closely than historic maximum
entropy, and error estimates on the spectral density (see
the Appendix) are larger. Because of the exponential
character of the kernel that relates the spectral function
to the Green’s function (20), the eigenvalues of the likeli-
hood function rapidly become very small so that N, is a
small number.! Typically, N, ~5-10 for N,~50-100.
As a consequence, the difference between the historic and
classic criteria is small, but as we shall show, the
difference can correspond to an order of magnitude or
more change in a.

While maximum entropy is a statistical regularization
procedure designed to minimize noise artifacts in the
data, there are no guarantees. For example, if there is a
broad feature in the spectrum, can it be resolved into two
or three distinct overlapping features with improved reso-
lution? How do we know that a particular feature in the
spectrum is real? The answer to these and similar ques-
tions is given by the size of the error bars (see the Appen-
dix) calculated for the features. If the error bars for a
particular feature are small, then the likelihood of there
being additional features or of that feature being a noise
artifact is small; however, if the error bars are large, we
can try to reduce the errors by improving either the data
or the prior knowledge. For example, we can produce
more data with larger number of Trotter steps L and
smaller step sizes A7, or reduce errors with a longer
Monte Carlo run. We can improve our prior knowledge
by selecting a more informative default model. Because
of the exponential kernel of our analytic continuation
problem, it is particularly helpful to input prior
knowledge of the high-frequency part of the spectral
function via the model. . v

Systematically increasing the probability of the data
P[G|I]by improving the data and the default model gen-
erally allows one to distinguish real features from noise
artifacts or test for unresolved features. The probability
of the data P[G|I], or evidence, is the normalization con-
stant in Bayes’s theorem. Increasing P[G|I] reduces the
size of the error bars.
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VI. DETAILED CASE STUDY

The discussion in Sec. V underscores the point that the
determination of the spectral density is not a “black-box”
calculation, even with a procedure that has no adjustable
parameters. In this section, we will provide a detailed
case study of the determination of spectral densities using
the maximum entropy method. In doing so, we will find
it useful to utilize the distinction between classic and his-
toric maximum entropy discussed briefly in the preceding
section. Classic maximum entropy is the procedure de-
scribed in Sec. III and the Appendix. It is based on the
Bayesian approach to probability theory, with the param-
eter a being chosen (marginalized) by probability theory,
resulting in y2=N. 4 —N,. Historic maximum entropy, on
the other hand, refers to the traditional procedure of
choosing the value of a such that y*=N,, where N, is
the number of data: it chooses the solution with the most
entropy that “fits the data.” Historic maximum entropy
results in a larger ¥? and larger a than classic maximum
entropy, leading to solutions with less structure and cor-
respondingly fewer artifacts. Historic maximum entropy
places more weight on the prior knowledge, relative to
the evidence in the data, than classic maximum entropy.
This often results in visually more appealing fits, because
the imperfections in the data are less able to filter
through. However, a choice of ¢ larger than that re-
quired by classic maximum entropy leads to overly op-
timistic estimates of the reliability of the fit.

The spectral function is to be inferred from quantum
Monte Carlo data for the Green’s function G (7). Figure
1 shows the data set on which we shall focus initially.
For the symmetric Anderson model, 4 (w) is an even
function, and G (), which equals —G (7+p), is an even
function in the interval 0 <7 <f about 7=8/2. The ex-
pansion parameter u =U/#I'=2.5 is much larger than
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FIG. 1. Matsubara Green’s function G(7) plotted vs imagi-
nary time 7 for the single-impurity symmetric Anderson model.
The parameters are 3=1/T, the inverse temperature; T, the hy-
bridization width between the impurity and the conduction
electrons; U, the Coulomb repulsion between two electrons on
the impurity; u = U /%T, the expansion parameter for perturba-
tive approaches to the Anderson Hamiltonian; and Ty, the cor-
responding Kondo temperature taken from the Wiegmann-
Tsvelick Bethe ansatz solution of the Anderson model.
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the domain of validity of Horvatié-Zlati¢ perturbation
theory. It is well into the regime where we expect univer-
sal behavior. The ratio T/Tx =1.5 is too large to expect
insight from the zero temperature Bethe ansatz®’ and
renormalization-group?® solutions. The large # in actual-
ity corresponds to a large U, for which the quantum
Monte Carlo algorithm, because of the Trotter approxi-
mation, will produce relatively large errors compared
with data at smaller U. Consequently, this data set pro-
vides a good test for our methods.

We have found that the covariance matrix associated
with G; is dense, with elements going to zero only at r=0
as required by the sum rule for the symmetric model

__ [t A (w)

G(0)= do—2-927
f—w w(1+e—5‘ﬂ)
=0.5 .

As discussed in Sec. IV C, the data can be considered to
be independent only in an orthogonally transformed data
space in which the covariance matrix is diagonalized.
The eigenvalues of the covariance matrix for our test data
set are shown in Fig. 2. The eigenvalues for all data sets
typically spanned four to six orders of magnitude with
the range depending greatly on the Anderson model pa-
rameters, as well as on the details of the quantum Monte
Carlo run. Smaller UT(A7)? and smaller 8 produced
smaller eigenvalues. Since the Gaussian errors on in-
dependent data correspond to square roots of the eigen-
values and since the smallest eigenvalue for our test data
set is approximately 10710, the errors are at the level of
the fourth or fifth digit of the G(7) data. Because of the
large dynamic range of the eigenvalues of the covariance
matrix, as well as the large range in the eigenvalues of the
likelihood function,! we found it useful to run our
maximum-entropy codes with 64-bit arithmetic. Failure
to take this care in the data preparation and handling
would often result in spurious siructure in the spectral
functions inferred.

A, Historic maximum entropy

We now proceed to the maximum-entropy analysis of
the data in Fig. 1. We began by using as a default model
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FIG. 2. Eigenvalues of the covariance matrix for the data in
Fig. 1, in order of decreasing values.
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a Lorentzian of width I" centered at @=0. This function
would be the correct spectral density only in the U—0
limit. It provides a very poor fit to the data, with
X*/N;=4.6X10% where N, is the number of data
values, but it does satisfy the G(0)=0.5 requirement
from the spectral function sum rule.

We then found the maximum-entropy solution as a
function of the statistical regularization parameter c.
The calculation begins at = co and iteratively reduces a.
Figure 3 shows the entropy S and the y?/N,; of the
maximum-entropy images as a function of a. At a= w0,
the maximum-entropy image is equal to the default mod-
el, the entropy S is zero, and the y2/N, is equal to its ini-
tial value for the default model. As « is reduced, the neg-
ative of the entropy, which is the measure of the distance
between the maximum-entropy image and the default
model, increases. At the same time the Xz/Nd, which is
the measure of the quality of fit to the data, decreases.
When y?/N,;=<1.0, we say that we have “fit the data,”
i.e., we have a feasible image. ‘

Figure 4 shows some of the corresponding images plot-
ted semilogarithmically with the frequency o scaled by
T2 to emphasize the important low-frequency physics,
especially the potential for universal behavior. Here Tp
is defined by 1/x(0), and it is related to the Kondo tem-
perature defined by the resistivity by TS =7"Tg /4. The
vertical axis is plotted as 7" 4 (@) for two reasons: this
is the quantity which can be expected to show universal
behavior, and the Friedel sum rule? requires it to equal 1
for w—0 and T—0. For large ¥*/N,, the image is equal
to the default model. As y2/N, decreases, the spectral
function deviates from the default model faster at low fre-
quencies than at higher frequencies.
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FIG. 3. Entropy S and x? divided by the number of data N,
as a function of the statistical regularization parameter « for the
maximum-entropy analysis of the data in Fig. 1. The label
DM =L denotes that a Lorentzian of width I was used as the
default model. The point labeled H indicates the stopping value
of e in historic maximum entropy where y?/N,=1.0. The
point labeled C marks the value of a for the classic-maximum-

entropy stopping criterion.
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FIG. 4. Maximum-entropy images of the single-impurity An-
derson model spectral function 4 (w) plotted vs w/Tg for vari-
ous values of Y2/N, as indicated. Here, the Wilson Kondo tem-
perature is defined by T9=1/x(T) at T=0 where y(T) is the
static magnetic susceptibility. The Wilson temperature charac-
terizes the low-temperature energy scale of the Anderson model
and is related to the Kondo temperature by T$ =Ty /4. The
curve with y*/N,= 1.0 is the historic-maximum-entropy result.

Until the advent of classic maximum entropy, the im-
age for x2/N;=1.0 was regarded as the “best image.”
The corresponding choice for a is termed the historic-
maximum-entropy stopping criterion, and its value is indi-
cated by the H in Fig. 3. This stopping criterion is based
on the belief that it provides the feasible image (i.e., it
barely fits the data) which is closest to the prior
knowledge represented by the default model. It contains
the least input from the noisy, incomplete quantum
Monte Carlo data. Since we chose a Lorentzian default
model which is smooth, we obtain an image with the least
structure which is consistent with the data. Indeed,
pushing ¥2/N,; down to 0.93 results in considerably more
structure of doubtful validity. We would say that we are
overfitting the data and that the image is ringing. In fact,
this image is physically wrong since it violates the Friedel
sum rule, unitarity limit bound that 74 (0=0)=1.
This image points to an important distinction between
maximum entropy and least-squares approaches to the
analytic continuation problem. Traditional least-squares
approaches would argue that images with smaller y*/N,
are better. Indeed, one might prefer to fit the data exact-
ly, as is done in simple Padé methods,’ but the corre-
sponding spectral function would show spurious struc-
ture corresponding to fitting the statistical noise in the
QMC simulation rather than the physics. Getting a
smooth spectral function would require better statistics
on the quantum Monte Carlo data, perhaps an order of
magnitude better than required by the maximum-entropy
approach.

In fact, there exist an infinite set of possible spectral
functions that fit the data for any chosen value of Y2/N,,
and most of them are undesirable according to physical
criteria. A popular modification to the least-squares pro-

cedure is to add a smoothing term,” 10 but then one is left
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with an arbitrary choice of smoothing parameter. In ad-
dition, these terms arbitrarily cause sharp features in the
spectral function to be smoothed even if the sharpness is
justified by the data.

Figure 5 compares the historic maximum entropy spec-
tral function with both the Horvatié-Zlatié¢ (HZ) pertur-
bation theory result and our best result obtained by the
classic maximum-entropy procedure discussed in Sec.
VIB. We obtain the Friedel peak at o=U/2, even
though it was absent in the Lorentzian default model,
showing that such high-frequency information was con-
tained in the quantum Monte Carlo data. The difference
between the HZ and the quantum Monte Carlo
maximum-entropy (QMC-ME) results at low w /7T is sta-
tistically and physically significant. As we shall show, it
represents the difference between the correct universal
behavior of the spectral function at low frequencies and
the nonuniversal behavior of perturbation theory at finite
order in u.

One may be concerned about the maximum-entropy
image going unstable between ¥*/N,;=1.0 and 0.93. As
shown in Fig. 3, the statistical regularization parameter
a, which controls the degree of fluctuation of the image
about the default model, is changing rapidly for very
small changes in ¥2/N,. This is untrue for most applica-
tions of maximum entropy to data analysis problems, but
it is a consequence of the very small number of well-
deterlmined good eigenvectors N, of the likelihood func-
tion.

One may be especially concerned that quantities of
physical interest, such as the resistivity, might depend
strongly on the choice of y2/N,;. We found that quanti-
ties like these, which are sensitive mainly to the well-
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FIG. 5. HZ labels the prediction of Hovati¢-Zlati¢ perturba-
tion theory for the spectral function in which the self-energy is
calculated to second order in the expansion parameter
u=U/wI". We find this is accurate for u <1.25. The curve la-
beled historic is the maximum-entropy image for the stopping
criterion of ¥?/N,=1.0 and a Lorentzian (DM =L) default
model. The curve labeled classic is our best result for the spec-
tral function. The peak centered at w=0 of width approximate-
ly TR is the Kondo resonance. The peaks centered at w+U /2
of width I' are the Friedel peaks corresponding to the removal
or addition of an electron to the impurity state.
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determined low-frequency properties of the spectral func-
tion [Eqgs. (25) and (26)], are fortunately insensitive to the
choice of y2/N .33

B. Classic maximum entrepy

While we could have analyzed all of our quantum
Monte Carlo data satisfactorily using the historic-
maximum-entropy stopping criterion, recent develop-
ments in maximum-entropy methods remove the ambi-
guity about the stopping criterion, i.e., the choice of a (or
equivalently y?/N,;). In addition, they provide a fully
probabilistic approach to data analysis that can provide
error estimates on integrated functions of the spectral
function, such as the resistivity, and answer questions of
solution assurance, i.e., “Is the ringing structure in the
X%/N;=0.93 image statistically significant?”” In Sec. III,
we described the theory of classic maximum entropy.!?
We now illustrate it.

We now analyze our test-data set with classic max-
imum entropy, using two different default models. One is
the Lorentzian (DM =L) model used in the VIA. This
model is shown in Fig. 4. The other is a more informa-
tive model, the Horvatié-Zlati¢é perturbation second-
order perturbation theory (DM =HZ) extrapolated
beyond its domain of validity (4 £1.0) to u =2.5. This
model is shown in Fig. 5. While the HZ theory cannot be
expected to describe quantitatively the low-frequency be-
havior, it can be expected to describe correctly the high-
frequency behavior. In this sense, the HZ model inputs
more prior knowledge than the Lorentzian model.

In classic maximum entropy, the stopping criterion is
determined by Eq. (22), —2aS=N,, where N, is the
number of good measurements. We find that S /N, is al-
most constant, which allows us to discuss the behavior of
the classic-maximum-entropy solution in terms of . In
the classic-maximum-entropy approach, one calculates
the probability of «, given the data and the prior
knowledge (default model), and chooses to maximize this
probability. This maximum occurs at —2aS /Ng=1.0.

Figure 6 shows the logarithm of the probability
P[G|a,m] as a function of a. For the Lorentzian default
model (DM =L), this probability is sharply peaked at a
particular o marked by the C symbol. In contrast, the
historic-maximum-entropy value of ¢, indicated by the H
symbol, is much larger than the classic value and is far
from the peak in the probability function by orders of
magnitude. For the HZ model, the posterior probability
is a shallow function of a, and the classic and historic
values for a are very close to one another. Since the
probability distribution for « is so shallow for the HZ
model, one might argue that taking the optimal value of
a is a poor approximation for the integral over a re-
quired by the probability theory (described in Sec. III).
The need for an explicit marginalization over a is one
motivation for the alternate algorithm® to solve the
maximum-entropy equations discussed in the Appendix.

Figure 7 shows x2/N, plotted against « for the two de-
fault models. This plot should be compared to Fig. 3.
For the Lorentzian default model (DM =L), the classic
value of the stopping criterion (marked by C) is much
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FIG. 6. Bayesian probability of the data P[G|I] plotted vs c.
DM =L labels the results for the Lorentzian default model,
while DM =HZ labels the results for the HZ default model.
The stopping criterion for classic maximum entropy is at the
peak of this probability distribution, whereas the stopping cri-
terion for historic maximum entropy is an a such that
X2/Ng=1.0. H labels the position of the historic values for the
stopping cgiterion, while C labels the classic values.

smaller than the Historic value (marked by H). The
value of y2/N, at the classic-maximum-entropy stopping
criterion is less than unity and is smaller for the Lorentzi-
an than for the HZ model. Since the number of good
measurements N, is small for the analytic continuation
problem (typically 5-10), ¥2/N, is only slightly less than
1. Since the HZ model is closer to the truth than the
Lorentzan model, the number of good measurements is
smaller and the y? is larger. Thus the better the model,
the less is the tendency for classic maximum entropy to
overfit the data. Indeed, the classic-maximum-entropy
image for the Lorentzian default model is the same as the
Xz/Nd=O. 93 ringing image shown in Fig. 4, as shown
again in Fig. 8. However, since classic maximum entropy
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FIG. 7. x¥2/N, plotted vs a for the maximum-entropy images
obtained using the Horvati¢-Zlati¢ (HZ) and Lorentzian (L) de-

fault models.
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"FIG. 8. Classic-maximum-entropy images of the spectral
function for two different default models. The guantum Monte
Carlo classic-maximum-entropy images of the spectral function
are labeled by QMC-ME for the Horvatié-Zlatié (HZ) and
Lorentzian (L) default models. The squares mark the average
image for the Lorentzian default model over the w/T§ regions
indicated by the horizontal bars. The vertical error bars indi-
cate that the ringing obtained by classic maximum entropy for
the Lorentzian meodel is not statistically significant. HZ labels
the Horvati¢-Zlati¢ second-order perturbation theory prediction
for u =2.5.

is fully based on probability theory, whereas historic
maximum entropy is not, it tells us that the image ob-
tained with the HZ model is several orders of magnitude
more probable than that obtained with the Lorentzian
model. It also provides error estimates for the structure
in the image. The squares show the averages of the image
over the w/Tg regions indicated by the horizontal bars.
The vertical bars indicate the statistical error estimates
on these averages. One sees that the structure in the
ringing image is not statistically significant.

For the informative Horvatié-Zlatié model
(DM = HZ), the classic value of the stopping criterion is
very close to the historic value. The y2/N, is larger than
the value for the Lorentzian model. The corresponding
image, shown in Fig. 8, is smooth, and the error bars on
integrated features in the image (not shown) are much
smaller.

The quality of the classic-maximum-entropy images
also depends, of course, on the quality of the data. Fig-
ure 9 shows images obtained for u =1.25 quantum
Monte Carlo data, which have approximately an order of
magnitude smaller statistical error than the u =2.5 data
set we have been considering so far. This value of u is
also the largest where we might expect Horvati¢-Zlatié
perturbation theory to be reliable. The figure shows in
this case that the classic-maximum-entropy image ob-
tained with the Lorentzian model (DM =L) is stable and
is essentially identical to Horvatié-Zlatié perturbation
theory. However, it is still possible to drive the
maximum-entropy image into instability by using an even
less informative model, which we chose to be the flat

model (DM =F) where m (#)=0.1. This model does not
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FIG. 9. Classic-maximum-entropy images of the spectral
function for u=1.25, around the limit of validity of second-
order Horvati¢-Zlatié (HZ) perturbation theory. The line la-
beled HZ and QMC-ME(DM =L) is actually two curves: one is
the prediction of perturbation theory, and the other, the
classic-maximum-entropy image obtained with a Lorentzian
model (shown as the curve labeled L DM). The curve labeled
QMC-ME(DM =F) is the classic-maximum-entropy image ob-
tained with a flat model (shown as the dashed line labeled F
DM), which is even less informative than the Lorentzian model.
For example, the Lorentzian model satisfies the G (0)=0.5 sum
rule, whereas the flat model does not. The image obtained with
the flat model is ringing, i.e., overfitting the data.

even satisfy the G(0)=0.5 sum-rule constraint, and the
corresponding image is ringing. Again, as in Fig. 8,
classic-maximum-entropy error estimates would show
that this structure is not statistically significant.
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FIG. 10. Testing the quantum Monte Carlo data for univer-
sality (independence of u). The scaled Green’s function ob-
tained from quantum Monte Carlo #F'G(7)/T§ is plotted vs
x =7/B for fixed T/Tx=1.5 and varying u = U /#T". Larger in-
tercepts at x =0 correspond to larger values of u. The conver-
gence of the curves at large x for different # indicates that the
underlying spectral function 7T" 4(w) is a universal function for
small w/Tg.
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C. Universality

As discussed in Sec. IV A, universality is the hy-
pothesis that low-frequency properties should only de-
pend on Tg and be independent of u=U/#T.
Specifically, we expect at low frequencies I" 4(®) to de-
pend only on /Ty and T/Tg. For fixed T /Ty this
would predict that ['G(7)/T% would be a function only
of 7/B. Figure 10 shows a plot of a sequence of quantum
Monte Carlo simulations with fixed T/Tx=1.5 and
varying u. The predicted scaling relation appears to hold
at large 7/(3, but not at small 7/8. Since large 7 corre-
sponds to the low-frequency part of the spectral function
and small = picks up high-frequency information, univer-
sality (independence from wu) is present in the low-
frequency properties of the spectral function but not in
the high-frequency properties. Indeed, as illustrated in
Fig. 5, the low-frequency peak is the Kondo resonance,
which we expect to show universal behavior, while at
high frequencies the spectral function exhibits the
w="U /2 peak, which is nonuniversal.

While the raw data, when properly scaled, appear to
show evidence for universal behavior, the default model
we shall use is not universal. Figure 11 shows the
Horvatié-Zlati¢ perturbation theory truncated at second
order in u for the same sequence of T/Tx and u values.
Increasing u increases the value of the intercept at w=0.
Of course, in principle, one could calculate higher-order
terms in the HZ expansion in # which would improve the
convergence toward a universal behavior at large u, but
this has not yet been done. Instead, we use the HZ
theory as a default model in order to reduce the variance
of the maximum-entropy data analysis. Figure 12 shows
the spectral functions obtained by using classic maximum
entropy and the HZ model. Within statistical error, the
spectral function is universal for @ /Tg < 10.

Figure 13 shows the corresponding results for the resis-
tivity ratio, calculated by imputing the spectral function

1-0 T T TEILTTE T T TFETIL T T TTTTH
- I I [
T/Tx = 1.5 ]
0.8 u = 1.25,1.5,2.0, —]
- 2.5,3.0 .
N HZ Pert. Theory R
—~ 0.8— —
3 C ]
= C ]
E 04 - —
0.2 — —
0‘0 C 1 1 ]lll“l I 1 Il'lll[ - ~
0.1 1 10 100

w/Tg

FIG. 11. Predictions of HZ perturbation theory up to second
order in u, at fixed T/Tx=1.5 and at a variety of u indicated.
To second order the perturbation theory is not universal at low
/T, although in principle higher-order terms in u may be cal-
culated which would extend its range of validity.
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FIG. 12. Quantum Monte Carlo and classic-maximum-
entropy images of the spectral function at fixed T/7Tx=1.5 and
a variety of u, obtained using the Horvati¢-Zlati¢ perturbation
theory as a default model and automatic noise scaling. The
Kondo resonance in the spectral function centered at o =0is a
universal function for w/T2 <10, within statistical error. The
Friedel peak centered at o= U /2 of width I is nonuniversal.

into Eq. (25). The HZ resistivity ratio is distinctly
nonuniversal. Our QMC-ME calculated using the HZ
default model are universal within one standard deviation
statistical error. The error bars are much smaller than
the distance between the QMC-ME and HZ results. Also
shown in this figure are the resistivity ratios obtained us-
ing the Lorentzian default model. The error bars with
the Lorentzian are much too large to reach any con-
clusions about the validity of universality. In this sense,
the use of an informative default model is essential to the
proof of universality.

The error bars are provided by the ability of classic
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FIG. 13. Resistivity ratios p(T)/p(0) at fixed T/Tg as a
function of u. The second-order HZ perturbation theory pre-
diction is distinctly nonuniversal. The quantum Monte Carlo,
classic-maximume-entropy (QMC-ME) resistivity ratio obtained
with the HZ default model is universal within one standard de-
viation statistical error. The resistivity ratio obtained with the
Lorentzian (DM =L) model has error bars which are much too

large to prove universality.
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maximum entropy to provide error estimates on any in-
tegrated property of the spectral function (see the Appen-
dix). We have found these error bars to be reliable in the
traditional sense: if we repeat the QMC simulation with
different random number seeds, the values for the resis-
tivity ratios are typically equal to within one standard de-
viation; if we repeat the QMC simulation with smaller
statistical error (more CPU time), the resistivity ratio has
smaller errors, and the result usually lies within the error
bars of the poorer statistics runs; and if we increase the
number of binned measurements, the error bars scale
with the inverse of the square root of the number of mea-
surements. One may also notice the trend toward larger
errors with increasing u. This has two origins: the quan-
tum Monte Carlo calculations have increasing statistical
errors with increasing # as measured by the eigenvalues
of the covariance matrix as shown in Fig. 2, and the
Horvatic¢-Zlati¢ perturbation theory becomes a less infor-
mative model with increasing u.

D. Automatic noise scaling

For Fig. 12, we used an additional feature of classic
maximum entropy, automatic noise scaling, which was
explained in Sec. III. Specifically, one chooses the noise
scaling to enforce the condition N,;= X2+Ng. This
feature is useful because of the difficulty in estimating the
errors in the quantum Monte Carlo data. In practice, we
have found that the noise scaling varied from 1.0 to 1.6
for most data sets, with 1.1-1.2 being typical values.
Generally, data sets having the smallest (A7)*T"U had the
best statistics. Conversely, large noise scalings (=2) ap-
peared to be a sure sign of pathology in the QMC data.
We would also get large noise scalings when
(AT)*T'U > 0.2 indicating a breakdown of the Trotter ap-
proximation. Large noise scalings would also occur when
the number of binned measurements was much too small.
However, we have not yet developed a systematic
analysis of the correlation between the noise scaling and
the behavior of the QMC algorithm.

Without the automatic noise scaling feature, we would
have had a tendency to overfit the data, and we would
have obtained ringing images for many of our data sets
with large error estimates on the resistivity ratio. In
cases where large noise scalings occurred, we would rerun
the QMC simulations until the noise scaling was less than
1.5. It proved expensive to do this for large U or at very
small T, which limited the range of Anderson model pa-
rameters we could reliably calculate.

VII. CONCLUSIONS AND DISCUSSION

Using the classic method of maximum entropy, we
show how to extract, with no adjustable parameters,
spectral and transport properties from the imaginary-
time correlation function data generated by QMC simula-
tions of the nondegenerate, symmetric, single-impurity
Anderson model. The physical quantities obtained were
found to be universal functions when the frequency and
temperature are scaled by the Kondo temperature. This

universality is a striking feature, not found in perturba-
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tion theory, but found in experiment, and provides the
benchmark for our claim of successful extractions. We
suggest that our techniques are not restricted to the
Hamiltonian and quantum Monte Carlo algorithm used
here, but that maximum entropy and these techniques lay
the general groundwork for the extraction of dynamical
information from imaginary-time data generated by other
guantum Monte Carlo simulations.

We showed that the quality of classic-maximum-
entropy images depends on both the quality of our prior
knowledge and the quality of the data. Given sufficiently
high-quality data (defined in terms of maximum com-
pleteness, minimal statistical errors, and minimal sys-
tematic errors), the default model is irrelevant, and the
correct result will always be obtained. Of course, one
might say that such a statement is true of any analytic
continuation procedure. Conversely, in the absence of
data maximum entropy simply returns the default model.
The advantage of maximum entropy over other analytic
continuation procedures comes when we consider real
data, which is always more incomplete and subject to sta-
tistical errors than we would like. Our experience is that,
compared with other analytic continuation pro-
cedures,"* maximum entropy can pull more information
out of the data available and can reduce the cost required
to generate adequate data by orders of magnitude.

While the error estimates provided by classic max-
imum entropy are a great aid in solution assurance, there
are no guarantees. Ultimately, a decision on whether a
good solution has been found depends on physical judg-
ment, experience with the use of the maximum-entropy
procedure, and experience with the data generation pro-
cess. Does the image found make physical sense? Does
the structure obtained correspond to the typical energy
and length scales in the problem? If not, additional prior
knowledge is needed to constrain the problem or to
choose the model. Does the image depend strongly on
small changes in x?/N,;? If so, it is unlikely that details
of the structure are statistically significant. This can be
checked by computing the errors on the image. Needed
are either higher quality data or a more informative mod-
el. Are the error rescalings large? If so, there may be a
problem in the process of estimating the statistical errors
on the data. The measurements may not be Gaussian dis-
tributed or there may be roundoff errors. Is the model re-
turned as the image with negligible error estimates? Al-
though one may have been wise enough to know the re-
sult of the calculation beforehand, in this instance it is
more probable that the quality of the data was too poor
to provide anything new. To test for this possibility, one
should try a different default model and see whether the
image tracks it. A strong dependence of the image on the
model is a sure sign of poor data quality. Does the image
depend systematically on supposedly irrelevant parame-
ters of the quantum Monte Cario run, e.g., the Trotter At
parameter? If so, systematic errors in the data generation
process, which are outside the domain of maximum en-
tropy, may exist. We have encountered all of these
pathologies at various stages in the development of the
maximum-entropy approach to extracting the physical
properties of the symmetric, single-impurity Anderson
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model.

The reader may have noticed that classic maximum en-
tropy has a tendency to overfit the data. In particular,
consider the equivalence of the y2/N,;=0.93 curve in
Fig. 4 and the classic-maximum-entropy result for the
Lorentzian default model in Fig. 8. To get a stable (i.e.,
nonringing) result from classic maximum entropy, we
had to input more prior knowledge in the form of a more
informative default model from HZ perturbation theory.
However, we might be strongly tempted to avoid the
need for either inputing more prior knowledge or obtain-
ing higher-quality quantum Monte Carlo data simply by
relaxing a. After all, the historic-maximum-entropy im-
age obtained with the Lorentzian default model is essen-
tially equivalent to the classic-maximum-entropy image
obtained with the HZ default model, as is shown in Fig.
5. While this behavior is true generally and it is easy to
adjust a, we pay a price in having to introduce an arbi-
trary choice of stopping criterion and the loss in the abili-
ty to make reliable error estimates. However, we admit
to a certain level of cheating in the sense that we have
often compared the classic maximum-entropy image to
the historic-maximum-entropy image in order to assess
whether classic maximum entropy may be overfitting the
data. In this case, the historic maximum-entropy image
may provide a better hint of what the correct answer may
be. Such comparisons point to the need for improving ei-
ther our prior knowledge or our QMC data for the
classic-maximum-entropy analysis.

Such overfitting by classic maximum entropy is a gen-
eral phenomenon, not unique to the analytic continuation
problem. Gull and Skilling!? have recently shown that an
additional hypothesis that the image is locally smooth is
required to overcome this tendency. They have intro-
duced a Bayesian approach to calculating intrinsic corre-
lation functions which minimizes this overfitting.?>?* Un-
like the attempts to introduce smoothing in least-squares
approaches,” ! where the choice of smoothing parameter
is ad hoc, in the Bayesian approach the smoothing pa-
rameter is determined from the data and so there are no
adjustable parameters. In addition, this method provides
for meaningful error estimates for individual points in the
spectral function, whereas classic maximum entropy only
provides finite error estimates on integrated properties of
the spectral function. For details, we refer the reader to
their articles, for we have not yet implemented this
method for the Anderson model. It was unnecessary
given the high quality of our Horvati¢-Zlati¢ default
model, but we expect this recent development to be im-
portant in cases where informative default models are
difficult to obtain.
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APPENDIX

We summarize two numerical algorithms for solving
the maximum-entropy equations.” We closely followed
the suggestions of Bryan and Skilling.*®*' The algo-
rithms maximize @ =aS—L by solving V=0 with
respect to the image A4 (@) and the parameter a where

S=3 [4,—m;— An(4,/m))],
i

GI _E.Klei )2

J

L=313 R

2 2 ?
i o;

G; is the data with standard errors o;, K, i is the kernel
which relates G; and 4;, and 4;= A (w»;)Aw; with Aw;
being the appropriate integration weight associated with
a discrete frequency w;.

Both algorithms proceed by a Newton-Raphson
search, but they differ in the space in which the search is
conducted. Most of the results presented in this paper
were analyzed by an iterative search in the image space
{ A;}. We will describe this method first. Recently, we
implemented a method which searches in the singular
space of the kernel K;;. 8 This second algorithm will also
be described.

At each step in the iterative, image space algorithm,
the current estimate of the image A; is treated as a vector
A in an r-dimensional space. The new image is generat-
ed from the old one by a Newton-Raphson step

A=—(VVQ) L.vQ
=—(aVVS—VVL) L.VvQ .

Since —VVS=(1/4,)8;;, the natural metric for the
search in the image space is g;=(1/4;)8;;. With this
metric surprisingly few directions are needed to approxi-
mately span the space defined by VQ. The algorithm
proceeds to maximum @ by searching along the direc-
tions generated from a binomial expansion of the matrix
(¢VVS —VVL)™L In our case, we found three directions
to be sufficient:

=A4(VS),
e,=A(VL),

A{VVL- [A(VS )/|VS|— VL)/IVL[ -

Here A(B) is a shorthanded notation for the vector
A;B;. Because of the metric, each vector VS and VL and
each matrix VVS and VVL are multiplied by the
g¥=4,8;=g;' to bring them into the same space
as the image. Since g;=—VVS, the directions
A[VVS-A(VS)]< A(VS) and  A[VVS-A(VL)]
e« A(VL) are not independent search directions. Q is
maximized in the three-dimensional space using a quad-
ratic approximation

Qx)=Qp+3, ef,-VQx"-i—% > eL-VVQ-er“x"
o nv

The location of the maximum x . vields the new image
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This procedure is repeated until it converges to a final
value of the image A(«a) for a given value of a.

The parameter « is determined by maximizing the pos-
terior probability of

with respect to Ina. The prior probability P[a] is as-
sumed to be relatively flat as a function of Ina and its
variation with Ina is sometimes neglected. The partition
functions Z,, Zg, and Z; are defined so that the metric g
modifies their differential measure. For example,

d’A
Q f H A 1/2 ’

with Z; and Z; being defined similarly. Z; is indepen-
dent of a. The integral for Zg is done by expanding S to
second order in a Taylor series and then approximating
the integral using the method of steepest descents. With
this approximation, 2

ZS=§ln &

The integral for Z¥ is done in a similar manner. Here
the matrix A;;= 4; 2 VVL),; 11/ 2 with eigenvalues A; is
defined. The maximum of the resulting ratio is then

found by solving
(NZy/Zp)
din(e) ’
with the result [Eq. (22)]

J

This equation is solved for a new value of ¢, and the pro-
cedure described above is reused to find a new image.
These steps are repeated until they converge to a final im-
age and a.

Recently, Bryan®® introduced an algorithm that is
more efficient for oversampled problems where N, is
small. Such problems can arise when the kernel is ex-
ponential in nature as in the present case. With this
method, the kernel is decomposed with a singular value
decomposition K=VZU7, where U and V are orthogo-
nal matrices, and 2 is the diagonal matrix which contains
the singular values. The search then proceeds by a
Newton-Raphson iteration, very similar to that described
above; however, here the search space is composed of the
column space of U, plus the remaining independent
direction A(VS). Specifically, the image A is related to
the search vector u through the relation

A;/m;=exp [2 i ]].

38

For problems involving exponential kernels K, this
method may be superior to the image-space methods for

two reasons. First, the most important search directions
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in the column space of U are associated with the largest
of the singular values (the diagonal elements of X). For
an exponential kernel, the singular values will fall off ex-
ponentially fast, so that in the most extreme cases, only
one direction (one column of U) may be important.
‘When rotated back into image space, this direction could,
in principle, be orthogonal to all three of the search
directions used in the image-space code. Second, the
singular space is always much smaller than the image
space. Thus this algorithm has a much smaller space to
search for the maximum of Q, and preferentially searches
in the most important directions and is usually more
efficient for problems involving a singular kernel than the
image-space algorithm.

In both algorithms, we find the image A (or u) which
maximizes Q =aS—L, with a chosen so that it maxim-
izes the posterior probability P[a|G,m]. However, for
the analytic continuation problems we have so far stud-
ied, P[a|G,m] is often not sharply peaked; rather, it can
be a broad distribution, heavily skewed to large values of
a (Fig. 6). In such cases, the mode and mean of the dis-
tribution differ, and it is proper to integrate the image
over the posterior probability to obtain the average im-
age,

(A)=[daPla|lG,m]Aa).

Here A(«) is the image that maximizes Q for fixed a. In
the cases, we have studied, this mean image has a slightly
less tendency to ring than the mode image; however, as
discussed in the manuscript, this could be because the
mean value of « is larger than the mode value.

For fixed a, once we have the image which maximizes
Q, we can estimate the error 8B of an integrated function
B of the image

B=T 4,P; .
i

The function P;=P(w;) may, for instance, equal w} and
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hence B would be the nth moment of the image.
At its maximum, Q is well described by a quadratic ex-
pansion in the image space

Q=~Q,+8ATvO+15AT.VyVQ-5A .

Then using the method of steepest descents to evaluate
the integral, one may show that

E=(5A8A")
1

drA ¥
=— —=_5A8A%2
ZQ f HiAil/2

~—(VVQ)~!.

The matrix B is the covariance of the image A. In order
to propagate this error to B, we need to work in a repre-
sentation where this covariance is diagonal. Thus we find
an orthogonal matrix O such that O !EO=D is diago-
nal, then we define a vector d such that

d=07'A, B(a)=3 P,0,d; .
ij
The covariance for d is the matrix D, which is diagonal,

so that the errors of d; and d; are uncorrelated, thus
8di=D,:

2
2 aB(a) 2

8B(a) % —-——adn od;
=3, [zpioin ]ZDn .

If we want an estimate of the error for the mean image
{ A), as described above, then we must integrate over
the posterior probability distribution of a

8B?= [daP[a|G,m][6B(a)—B(a)]

+ [fdaP[aI@,m]B(a) 2 .
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